Semi-supervised Segmentation of Histopathology
Images with Noise-Aware Topological Consistency
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Gland/Nuclei Segmentation in Digital Pathology




Importance

Downstream analysis
o e.g.: Basis of diagnosis, survival prediction
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The Problem

e Limited availability of labeled histopathology data

O  Heavy annotation burden
O  Needs domain expertise

® Semi-supervised methods
o  Small group of labeled data + large group of unlabeled data
O  Consistency-based regularization methods:
O  Enforce consistent predictions under data augmentation.
O  Mean-Teacher Framework
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Issues in current methods

e Consistency-based semi-supervised methods

O  Focus on per pixel/voxel consistency
O  Fail to learn the topological characteristics from the unlabeled data
O Cannot fix the structural errors, such as wrongly merging
glands/nuclei False positive predicted glands

Locations prone to topo errors False negative holes

e EXxisting methods
o XNett, URPC2
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segmentation of biomedical images." Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2023.
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Our Approach

e Under different perturbations, the topology of the outputs should be consistent.
e Enforce the topological consistency between noisy topological features.
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Contributions

e Decomposition strategy to avoid directly matching between noisy structures
® Learn robust topological representations from the unlabeled data
® Backbone agnostic and stable to small perturbations
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Qualitative Results
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Quantitative Results
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p Conclusion & Thank you
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Code:
"\ 1\ https://github.com/Melon-Xu/TopoSemiSeg
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